MAISA Unit Algebra I, Unit 4: Quadratic Functions

CONNECTIONS: Michigan Academic Standards for Mathematics - Algebra I

EXAMPLE CONTEXT FOR LANGUAGE USAGE: Students, given an equation of a quadratic parent function (i.e., $y = x^2$), will listen to a description of one or more transformations to be made to the graph, sketch a graph that appropriately displays those transformations, and write the appropriate equation for their graph in vertex form, $y = a(x - h)^2 + k$. Depending on the lesson goals, it may be appropriate for students to choose correct answers rather than creating them. Note that selecting an answer reduces the cognitive demand of the task.

The goal is to create the vertex form, $y = a(x - h)^2 + k$. Note that this form does not have a coefficient on x, so there will be no reflection over the y-axis or horizontal stretch/shrink. This listening task is a good opportunity for students to notice that order matters by changing the order of transformations (i.e., the vertical shift) on two examples. For example, (1) reflect over x-axis, (2) stretch vertically by 2, (3) shift horizontally by 3, and (4) shift vertically by 7 yields $y = -2(x - 3)^2 + 7$. But, (1) shift vertically by 7, (2) reflect over x-axis, (3) stretch vertically by 2, (4) shift horizontally by 3 yields $y = -2[(x - 3)^2 + 7]$.

COGNITIVE FUNCTION: Students at all levels of language proficiency **INFER** how various transformations (translating, reflecting, stretching, or shrinking) affect the appearance of the graph (including the vertex, width, and orientation) and the equation in vertex form, $y = a(x - h)^2 + k$ to **PRODUCE** an appropriate graph and equation.

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
	Entering	Emerging	Developing	Expanding	Bridging	Reaching
Listening	Listen to a description read	Listen to a description read	Listen to a description read	Listen to a description read	Listen to a description read	
	aloud multiple times with	aloud multiple times with	aloud multiple times (with			
	purposeful pauses, pointing,	purposeful pauses, pointing,	purposeful pauses) of one or		of one or more transformations	
			more transformations made to	made to the graph of a	made to the graph of a	
	or more transformations made	or more transformations made	the graph of a quadratic	quadratic function, sketch the	quadratic function, sketch the	
	to the graph of a quadratic	to the graph of a quadratic	function, sketch the	appropriate graph and write	appropriate graph and write	
	function, sketch the	function, sketch the	appropriate graph and write	the appropriate equation in	the appropriate equation in	
	appropriate graph and write	appropriate graph and write the		vertex form, $y = a(x - h)^2 + k$,	vertex form, $y = a(x - h)^2 + k$,	
	the appropriate equation in	appropriate equation in vertex	vertex form, $y = a(x - h)^2 + k$,	to represent the graph, while	to represent the graph, while	
	vertex form, $y = a(x - h)^2 + k$,	form, $y = a(x - h)^2 + k$, to	to represent the graph, while	referring to an anchor chart	referring to an anchor chart	
	to represent the graph, while	represent the graph, while	referring to an anchor chart	while working with a partner.	before checking work with a	
	referring to an anchor chart,	referring to an anchor chart,	and working with a partner at a		partner.	
	working with a level 1 or 2	working with a level 1 or 2	higher level of language	E.g., "Sketch a graph of the		
			proficiency.	transformed function [pause]	E.g., "Sketch a graph of the	
	completed similar task with	completed similar task with		and write an equation in vertex		
	different transformations.	different transformations.	E.g., "Sketch a graph of the	form [pause] to represent the	and write an equation in vertex	
			transformed function [pause]	graph. Sketch and write the	form [pause] to represent the	
	E.g., "Sketch [say: or draw] a	E.g., "Sketch [say: or draw] a	and write an equation in vertex	steps of each transformation.	graph. Sketch and write the	
	graph of the transformed	graph of the transformed	form [pause] to represent the	Circle your final graph and	steps of each transformation.	
	function [pause and say: the	function [pause and say: the	graph. Sketch and write the	equation. The graph of the	Circle your final graph and	
	new function] and write an	new function] and write an	steps of each transformation.	parent function y equals x	equation. The graph of the	
	equation in vertex form [pause	equation in vertex form [pause	Circle your final graph and	squared [pause] is	parent function y equals x	
	and point to anchor chart] to	and point to anchor chart] to	equation. The graph of the	transformed by a horizontal	squared [pause] is transformed	
	represent the graph. Sketch	represent the graph. Sketch	parent function y equals x	shift [pause] two units to the	by a horizontal shift [pause]	
	and write the steps of each	and write the steps of each	squared [pause] is transformed		two units to the right [pause],	
	transformation. Circle your	· · · · · · · · · · · · · · · · · · ·	by a horizontal shift [pause]	stretch [pause] by a factor of	and a vertical stretch [pause]	
	final graph and equation. The	• • • • •	two units to the right [pause],	three [pause]."	by a factor of three [pause]."	
	graph of the parent function	of the parent function [pause	and a vertical stretch [pause]			
	[pause and point to the anchor	and point to the anchor chart	by a factor of three [pause]."			
	chart or student example] y	or				
	equals x					

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
	Entering	Emerging	Developing	Expanding	Bridging	Reaching
Listening Continued	squared [pause] is transformed by a horizontal shift [pause and point to the anchor chart] two units to the right [pause and point to the right], and a vertical stretch [pause and point to the anchor chart] by a factor of three [pause and hold up three fingers]."	student example] y equals x squared [pause] is transformed by a horizontal shift [pause and point to the anchor chart] two units to the right [pause and point to the right], and a				

MAISA Unit Algebra I, Unit 4: Quadratic Functions

EXAMPLE CONTEXT FOR LANGUAGE USAGE: Students explain what different algebraic forms of quadratic equations reveal about their graphical features. Students should work in groups of mixed abilities, but Level 5 students' language usage may be too far ahead of Level 1 students. We recommend grouping students in similar language levels. For example, groups with overlapping levels such as: students in Levels 1, 2, & 3; students in levels 2, 3, & 4; or students in levels 3, 4, & 5.

COGNITIVE FUNCTION: Students at all levels of English language proficiency JUSTIFY what graphical information is identified from each form of a quadratic equation.

Problem taken from: https://tasks.illustrativemathematics.org/content-standards/tasks/388 (only part b of the task)

These three equations all describe the same function: $y_1 = (x - 3)(x + 1)$; $y_2 = x^2 - 2x - 3$; $y_3 = (x-1)^2 - 4$. What are the coordinates of the following points on the graph of the function? vertex: ___; y--intercept: ___; x--intercept(s): ___. From which equation is each point (or points) most easily determined? Explain.

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
	Entering	Emerging	Developing	Expanding	Bridging	Reaching
Speaking	Justify using multiple simple	Justify using multiple simple	Justify using multiple		Justify using compound and/or	
	sentences the graphical	sentences the graphical	sentences the graphical	complex sentences the	complex sentences the	
	information given from each	information given from each	information given from each	graphical information given	graphical information given	
	form of a quadratic equation	form of a quadratic equation	· · ·	from each form of a quadratic	from each form of a quadratic	
	using sentence frames with	using sentence frames with	using sentence frames, a	equation using a suggested	equation using a required word	
	choices, pointing, a quadratic	choices, a quadratic forms	suggested word bank (factored		list (i.e., factored form,	
	forms reference sheet (labeling		form, expanded/standard form,	expanded form or standard	expanded form or standard	
	the different forms of quadratic			form, constant, factors, vertex	form, constant, factors, vertex	
	equations and terms including	equations and terms including		form, y-intercept, x-	form, y-intercept, x-	
	constant, factors, vertex, x-	constant, factors, vertex, x-	reference sheet (labeling the	intercept(s), vertex, opposite)	intercept(s), vertex, opposite)	
	intercepts, and y-intercepts)	intercepts, and y-intercepts)	different forms of quadratic	while working in a small group	while working in a small group	
	while working in a small group	while working in a small group	equations and terms including	with mixed abilities,	with mixed abilities,	
	with mixed abilities,	with mixed abilities,	constant, factors, vertex, x-	mathematically and	mathematically and	
	mathematically and	mathematically and	intercepts, and y-intercepts)	linguistically, where students	linguistically, where students	
	linguistically, where students	linguistically, where students	o o 1	with higher levels of English	with higher levels of English	
	with higher levels of English	with higher levels of English	with mixed abilities,	language proficiency model	language proficiency model	
	language proficiency model	language proficiency model	mathematically and	appropriate responses.	appropriate responses.	
	appropriate responses.	appropriate responses.	linguistically, where students			
		The vertex is (,). It is	with higher levels of English	E.g. The vertex is (1, -4). It is	E.g., The vertex is (1, -4) and	
	The vertex is [students may	easiest to get from y(1/2/3)	language proficiency model	easiest to see in equation y3	is easily determined from y3	
	say or point to the coordinates]		appropriate responses.	because it comes from the	(vertex form) a(x-h)^2+k,	
	(,). It is from [students	(constants/factors) [student		opposite values of these	where (h, k) is the vertex (the	
	may say or point to the	points to h and k]. The		constants [points to h and k].	opposite values of the	
	equation] y(1/2/3) in	equation is in	u u u u u u u u u u u u u u u u u u u	The equation y3 is in vertex	constants shown in this form).	
	(vertex/standard/			form. The y-intercept is (0, -3).	The y-intercept (0,-3) can be	
	factored) form. The y-intercept			It is easiest to see in y2	easily determined from y2	
			equation is in form.			
		easiest to get from y(1/2/3)		equation y2 is in standard	because it is the constant.	
	from [students may say or	because it comes from the	The y-intercept is It is		The x-intercepts (3, 0) and (-1,	
	point to the equation]			(3,0) and (-1,0).	0) can be easily determined	
	y(1/2/3). It is from the		equation because it		from y1 (factored form) since	
					the x-intercepts are	
	(constant/factors)	constant/factors)		They are easiest to see in y1	found by setting both factors	
	from	[student points to	equation is in form.	because they are the opposite	equal to zero.	
	(vertex/standard/	constant]. The equation is in		values of theconstants in the		
	factored) form.	(constant/ factors).		factors. The equation y1 is in		
				factored form.		

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
	Entering	Emerging	Developing	Expanding	Bridging	Reaching
Speaking	The x-intercepts are [students	The x-intercepts are (,)	The x-intercepts are			
Continued	may say or point to the	and (,). It is easiest to get	and They are			
	coordinates] (,) and	from y (1/2/3) because the	easiest to get from equation			
	(,). They are from	come from the	because they come			
	[students may say or point to	(constant/factors) [student	from This equation is			
	the coordinates] y (1/2/3).	points to constants in each	in form.			
	They are from the	factor]. The equation is in				
	(constant/factors	(vertex/standard				
) from	/factored) form.				
	(vertex/standard/					
	factored) form.					

MAISA Unit Algebra I, Unit 4: Quadratic Functions

EXAMPLE CONTEXT FOR LANGUAGE USAGE: The strand below is written for the "Egg Launch Contest" from NCTM Illuminations archived at https://tinyurl.com/y7zund6. It is a two page activity with multiple tasks. The strand below was written to support the linguistic demands of the first page. Additional strands would be required to support the linguistic demands of the additional tasks on the second page. This is a combined reading and writing activity. A writing strand should be written to scaffold the supports necessary for students to perform the writing tasks. The following YouTube video shows students performing an egg launch. As an introduction to the context, all students would benefit from seeing a video in which an egg is launched. (https://www.youtube.com/watch?v=2VcghDq1q18) Due to the lengthy nature of the reading required to do the tasks for this activity, the examples related to this strand can be found in the supports for this unit.

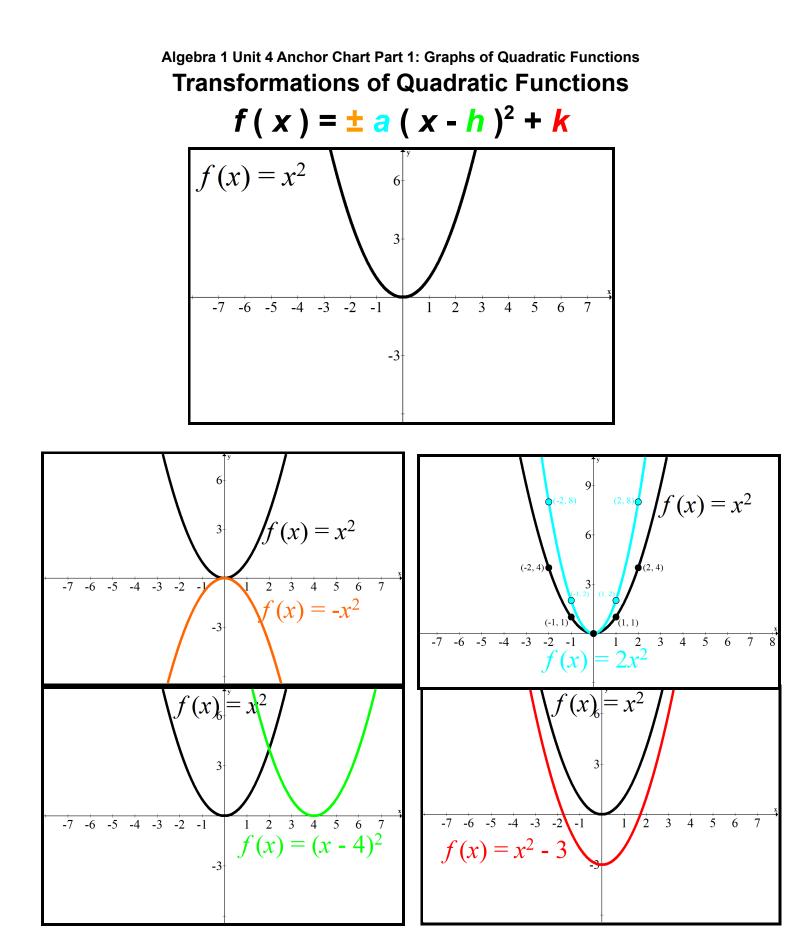
Teachers can use this opportunity to talk to students about precision and accuracy of real-world data: that the table, equation, and graph are all approximations of real-world data. Note that if students use the table to create an equation, using different rows would yield different equations. As indicated in the sample responses, students could have multiple supports available to them to encourage multiple strategies (e.g., graph paper to generate graphs from equations or tables, graphing calculators). The task intentionally leaves open the goal, so students may want to find the vertex (highest egg wins) or the length from start to end (max distance - min distance). Rich discussion may emerge from comparing strategies, noting that different representations have advantages and disadvantages when it comes to the accuracy and precision of estimates of vertices or intercepts.

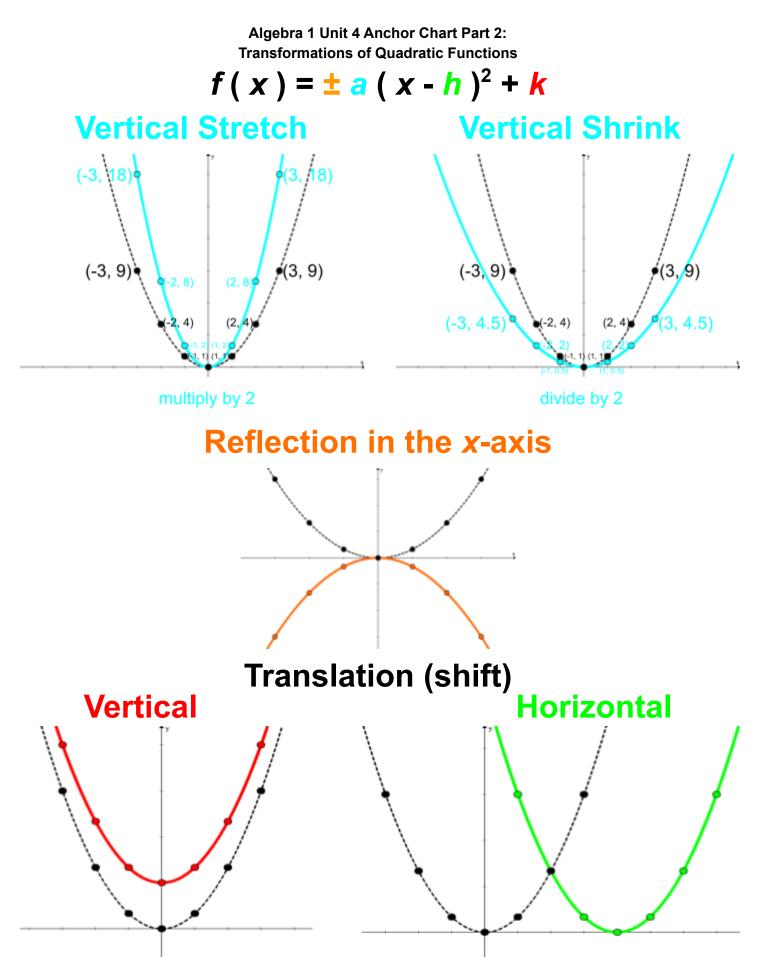
COGNITIVE FUNCTION: Students at all levels of language proficiency ANALYZE mathematical descriptions and mathematical representations in order to DRAW CONCLUSIONS.

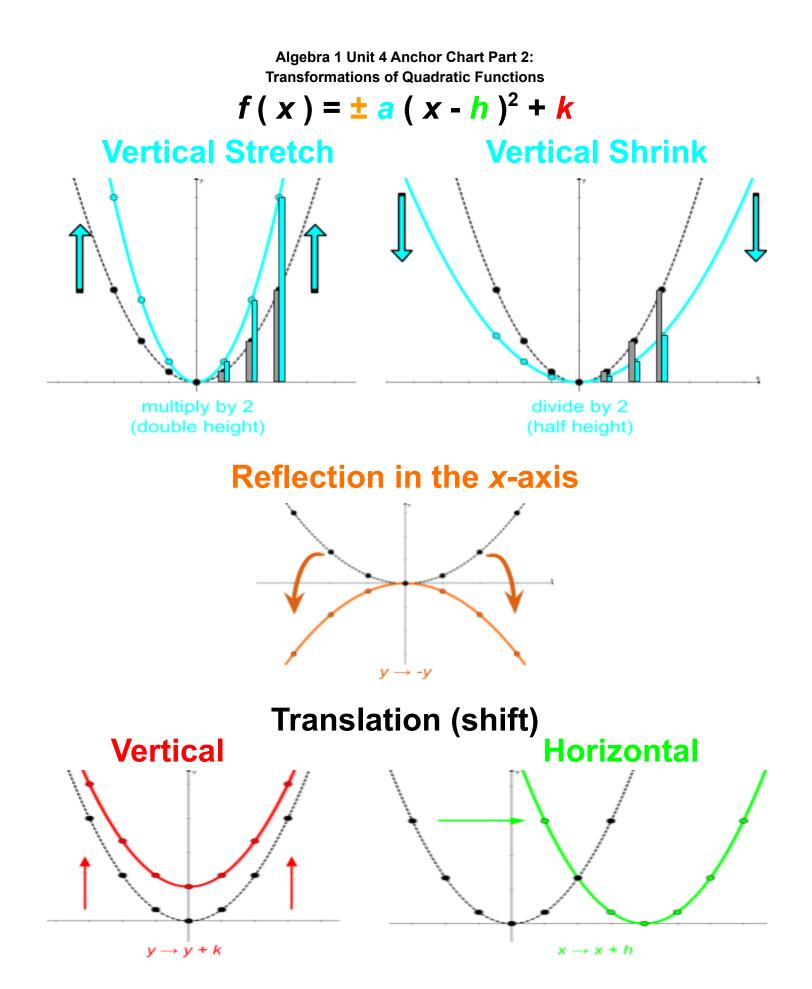
	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
	Entering	Emerging	Developing	Expanding	Bridging	Reaching
Reading	Analyze glossed and illustrated	Analyze glossed and illustrated	Analyze a glossed version of	Analyze a glossed version of	Analyze mathematical	
	mathematical descriptions co-	mathematical descriptions co-	mathematical descriptions to	mathematical descriptions to	descriptions to compare	
	created with the teacher and	created with the teacher and	compare multiple	compare multiple	multiple representations of	
	student(s) to compare multiple	student(s) to compare multiple	representations of multiple	representations of multiple	multiple (three) data sets, after	
	representations of multiple	representations of multiple	(three) data sets, after viewing	(three) data sets, after viewing	viewing a video depicting the	
	(three) data sets, after viewing	(three) data sets, after viewing	a video depicting the context,	a video depicting the context,	context, in order to draw	
	a video depicting the context,	a video depicting the context,	and using an illustrated word	in order to draw conclusions	conclusions about the data	
	and using an illustrated word	and using an illustrated word	bank for contextual words, in	about the data while working	while working with a partner.	
	bank for contextual words, in	bank for contextual words, in	order to draw conclusions	with a partner.	с .	
	order to draw conclusions	order to draw conclusions	about the data while working	· ·	For detailed examples, see the	
	about the data while working	about the data while working	with a partner.	For detailed examples, see the	· · ·	
	with a partner.	with a partner.		supports for this unit.		
			For detailed examples, see the			
	For detailed examples, see the	For detailed examples, see the	• • •			
	supports for this unit.	supports for this unit.				

MAISA Unit Algebra I, Unit 4: Quadratic Functions

EXAMPLE CONTEXT FOR LANGUAGE USAGE: The strand below is written for the "Egg Launch Contest" from NCTM Illuminations archived at https://tinyurl.com/y7zund6y. It is a two page activity with multiple tasks. The strand below was written to support the linguistic demands of the first page ("Which team won the contest?") and the first question of the second page ("Using the data from Team A, determine an equation that describes the path of the egg. Describe how you found your equation."). The task on page 1 is open to multiple answers and approaches, while the questions on page 2 direct students in one strategy. The goals of the first page are focused more on students making sense of the situation through their analysis and using creativity to make and justify claims. On the second page, the goals focus on guiding students to practice skills and concept understanding from previous lessons in this unit. Additional strands would be required to support the linguistic demands of the additional tasks on the second page.


This is a combined reading and writing activity. The strand below is written to scaffold the supports necessary for students to perform the writing tasks. As an introduction to the context, all students would benefit from viewing a video in which the students launch eggs. Teachers can use this opportunity to talk to students about precision and accuracy of real-world data: that the table, equation, and graph are all approximations of real-world data. Note that if students use the table to create an equation, using different rows would yield different equations. As indicated in the sample responses, students could have multiple supports available to them to encourage multiple strategies (e.g., graph paper to generate graphs from equations or tables, graphing calculators). The task intentionally leaves open the goal, so students may want to find the vertex (highest egg wins) or the length from start to end (max distance - min distance). Rich discussion may emerge from comparing strategies, noting that different representations have advantages and disadvantages when it comes to the accuracy and precision of estimates of vertices or intercepts.


Time to problem solve and work with the mathematics scaffolds students into using language to justify their reasoning in writing. In order to support language without undermining the cognitive demand of the mathematics, sentence starters/prompts should be given after significant time for problem solving. While students problem solve, asking them to label their work with short phrases prepares them to write more detailed sentences.


COGNITIVE FUNCTION: Students at all levels of language proficiency ANALYZE mathematical descriptions and mathematical representations in order to DRAW CONCLUSIONS.

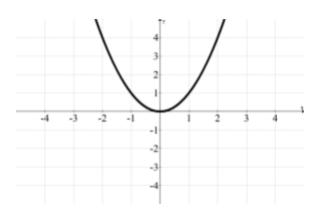
	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
	Entering	Emerging	Developing	Expanding	Bridging	Reaching
Writing	Justify by labeling with words or	Justify by labeling with words or	Justify in complete sentences a	Justify in compound or complex	Justify in compound and/or	
	short phrases a conclusion drawn	short phrases a conclusion drawn	conclusion drawn from comparing	sentences a conclusion drawn	complete sentences with	
	from comparing different	from comparing different	different representations of	from comparing different	transition words a conclusion	
	representations of quadratic	representations of quadratic	quadratic functions to reveal and	representations of quadratic	drawn from comparing different	
	functions to reveal and explain	functions to reveal and explain	explain different properties of the	functions to reveal and explain	representations of quadratic	
	different properties of the function		function using provided data, a	different properties of the function		
	followed by a few simple	followed by a few simple	suggested word list (i.e.,	· · · · · · · · · · · · · · · · · · ·	different properties of the function	
	sentences using provided data, a	sentences using provided data, a	quadratic, parabola, equation,	word list (i.e., quadratic, parabola,	using provided data, a suggested	
	suggested word list (i.e.,	suggested word list (i.e.,	function, variables, x-axis, y-axis,	equation, function, variables, x-	word list (i.e., quadratic, parabola,	
	quadratic, parabola, equation,	quadratic, parabola, equation,	maximum, height, distance,	axis, y-axis, maximum, height,	equation, function, variables, x-	
	function, variables, x-axis, y-axis,	function, variables, x-axis, y-axis,	regression, intercept, vertex,	distance, regression, intercept,	axis, y-axis, maximum, height,	
	maximum, height, distance,	maximum, height, distance,	vertex form, standard form,	vertex, vertex form, standard	distance, regression, intercept,	
	regression, intercept, vertex,	regression, intercept, vertex,			vertex, vertex form, standard	
	vertex form, standard form,	vertex form, standard form,	by the student, a sentence	drawn by the student, working	form, factored form, first, then, so,	
	factored form) and pictures drawn	· ·	prompt/starter organizer, the	with a partner.	therefore) and pictures drawn by	
	by the student, the quadratic	by the student, the quadratic	quadratic forms reference sheet,		the student, working with a	
	forms reference sheet, and	forms reference sheet, and	and working with a partner.	E.g., [Using a table to find an	partner.	
	working with a partner.	working with a partner.		equation in factored form] "I know		
			The form of the equation I used is	that one of the factors is (x-24)	E.g., [Using a table to find an	
	0 / 1	E.g., drawing an arrow to the point			equation in factored form] "First, I	
	(6,0) and labeling it "intercept"	(6,0) and labeling it "intercept" and		table. I used a graph to estimate	know one factor is (x-24) because	
	and writing "factor is (x-6)".	writing "factor is (x-6)".	in factored form, the student	the other x-intercept at (6,0), so	of the point (24,0) on the table. I	
	"The x-intercept is (6,0). (x-6) is a		answers the following questions:]	the other factor is (x-6). Then, I	used a graph to estimate the	
	factor."	factor."		used the point (12,90) and the	other x-intercept at (6,0), so the	
			How did you find p and q?	equation $y=a(x-6)(x-24)$ to find the		
			How did you find a?	value of a which is -5/4. So, the	the point (12,90) and the equation	
			The equation is	equation is $y=-5/4(x-6)(x-24)$."	y=a(x-6)(x-24) to find the value of	
			OR		a which is $-5/4$. So, the equation is	
					y=-5/4(x-6)(x-24)."	

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
	Entering	Emerging	Developing	Expanding	Bridging	Reaching
Writing Continued			[Using a table to find an equation in vertex form, the student answers the following questions:] How did you find h and k? How did you find a? The equation is OR [Using a table to find an equation in standard form, the student answers the following questions:] How did you find a, b, and c?The equation is	[Using a table to find an equation in vertex form] "I graphed the points from the table to estimate the vertex. I know the x value of the vertex is 15.5 because it is halfway between (12,90) and (19,90). I used the graph to estimate that the vertex is (15.5, 105). Then I used the point (12,90) and the equation $y=a(x-15.5)^{x}2+105$ to find a which is - 1.22. So, the equation is $y = -1.22(x-15.5)^{x}2+105$." [Using a table to find an equation in standard form] "I entered the data into a calculator and used regression to find the equation. The equation is $y = -1.3x^{x}2 + 39.6x - 195.1$."	[Using a table to find an equation in vertex form] "First, I graphed the points from the table to estimate the vertex. I know the x value of the vertex is 15.5 because it is halfway between (12,90) and (19,90). I used the graph to estimate that the vertex is (15.5, 105). Then I used the point (12,90) and the equation $y=a(x-15.5)^{A}2+105$ to find a which is -1.22. So, the equation is $y = -1.22(x-15.5)^{A}2+105$." [Using a table to find an equation in standard form] "First, I entered the data into a calculator and then used regression to find the equation. The equation is $y = -1.3x^{A}2 + 39.6x - 195.1$."	

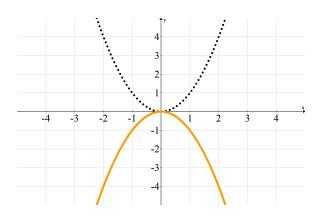
Copyright ©2015-2017 by the Michigan Association of Intermediate School Administrators and Oakland Schools

Algebra 1 Unit 4 Listening Task Example

Example of a similar task for students to reference:

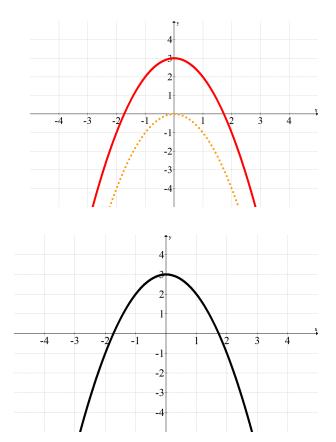

$f(x) = \pm \frac{1}{2} (x - \frac{h}{h})^2 + \frac{k}{h}$

The graph of the parent function is y equals x squared.

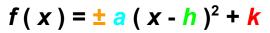

- The original graph is first transformed by a reflection over the x-axis.
- Then by a vertical translation three units up.

Sketch a graph and write the equation of the transformed function."

Parent Function: $y = x^2$



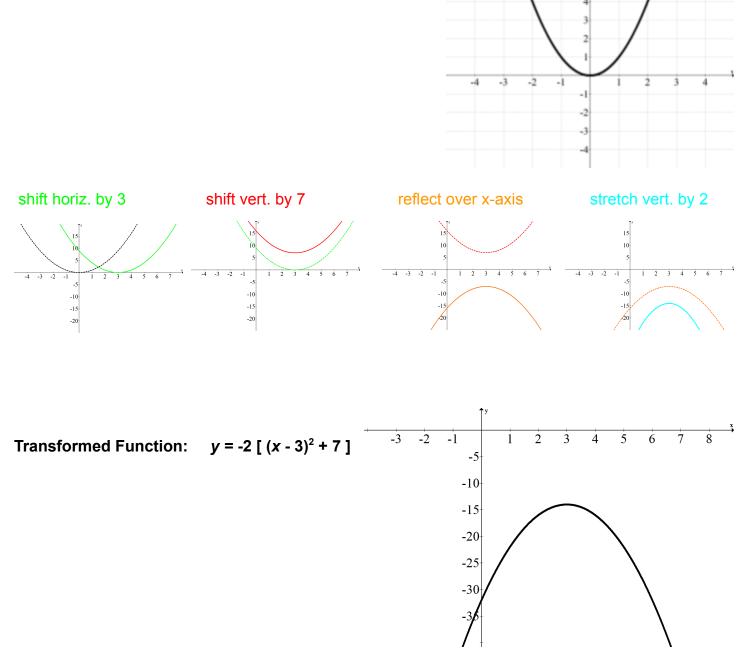
reflection over x-axis: $y = -x^2$



Transformed Function: $y = -x^2 + 3$

vertical translation 3 units up: $y = -x^2 + 3$

Part 1: Order matters



The graph of the parent function is y equals x squared.

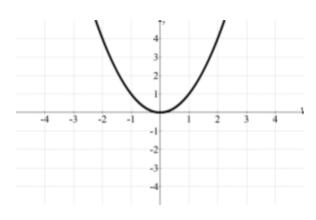
- shift horizontally by 3
- shift vertically by 7
- stretch vertically by 2
- reflect over x-axis

Sketch a graph and write the equation of the transformed function."

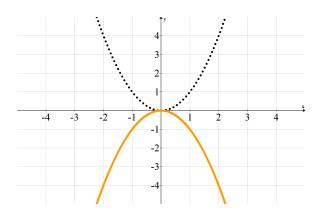
Parent Function: $y = x^2$

Algebra 1 Unit 4 Listening Task Example

Example of a similar task for students to reference:

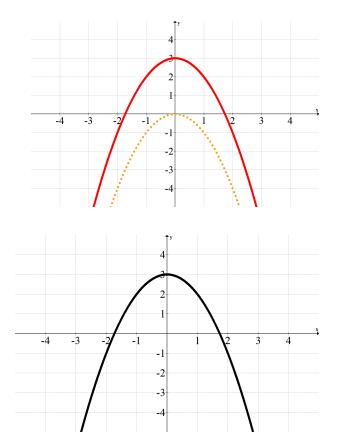

$f(x) = \pm \frac{1}{2} (x - \frac{h}{h})^2 + \frac{k}{h}$

The graph of the parent function is y equals x squared.

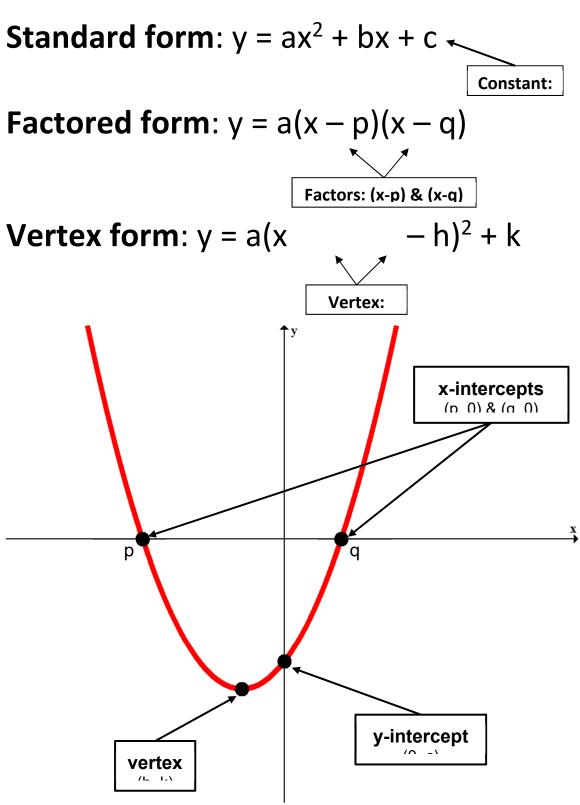

- The original graph is first transformed by a reflection over the x-axis.
- Then by a vertical translation three units up.

Sketch a graph and write the equation of the transformed function."

Parent Function: $y = x^2$

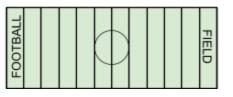


reflection over x-axis: $y = -x^2$



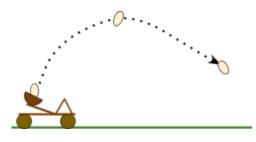
Transformed Function: $y = -x^2 + 3$

vertical translation 3 units up: $y = -x^2 + 3$



Quadratic Forms Reference Sheet

Egg Launch Game Adapted from <u>https://tinyurl.com/y7zund6v</u>


Mr. Rhodes' class holds an egg launching game on the football field.

Student teams built [made] catapults [machines to

catapult

throw things] to hurl [throw] an egg down the football field.

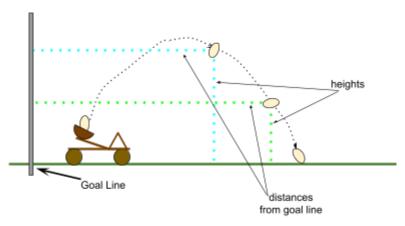
egg

Teams use their catapult [machine to throw] things] to hurl [throw] an egg down the football field. Teams do not start at the field goal line.

Teams use a motion detector [tool to measure speed and distance] to capture data

[measurements]. Distances are measured from the field goal line. Heights are measured from the ground.

Team A wrote the table below to represent the path of their egg.


DISTANCE FROM GOAL LINE (IN FEET)	HEIGHT (IN FEET)
7	19
12	90
14	101
19	90
21	55
24	0

Team B wrote an equation to represent the path of their egg:

 $y = -0.8\tilde{x}^2 + 19x - 40$ where x is distance from the goal line and y is height from ground.

Team C drew a graph to represent the path of their egg.

Which team do you think won the game? Why?

Egg Launch Game Adapted from <u>https://tinyurl.com/y7zund6v</u>

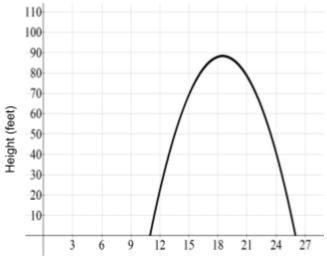
Mr. Rhodes' class holds an egg launching game on the football field.

Student teams built [made] catapults [machines to throw things] to hurl [throw] an egg down the football field.

Teams use their catapult [machine to throw things] to hurl [throw] an egg down the football field. Teams do not start at the field goal line.

Teams use a motion detector [tool to measure speed and distance] to capture data [measurements]. Distances are measured from the field goal line. Heights are measured from the ground.

Team A wrote the table below to represent the path of their egg.


DISTANCE FROM GOAL LINE (IN FEET)	HEIGHT (IN FEET)
7	19
12	90
14	101
19	90
21	55
24	0

Team B wrote an equation to represent the path of their egg: $y = -0.8x^2 + 19x - 40$,

where x is distance from the goal line and v is height from ground.

Team C drew a graph to represent the path of their egg.

Which team do you think won the game? Why?

Distance from Goal Line (feet)

Team A

1. Using the data from Team A, determine an equation that describes the path of the egg. Describe how you found your equation.

12. Find a method of determining finding a winner so that the team that <u>did not win</u> in Question 10 or Question 11 <u>would win</u> using your method.

- Height is a method.
- Distance is a method.
- Another method could be...

Which form of	of the equation did you use?(circle yo	ur answer below)
Factored Form y = a (x - p)(x - q)		
How did you find <i>p</i> and <i>q</i> ?	How did you find <i>h</i> and <i>k</i> ?	How did you find <i>a</i> , <i>b</i> , and <i>c</i> ?
How did you find <i>a</i> ?	How did you find <i>a</i> ?	
The equation is	The equation is	The equation is

Algebra 1_Unit 4_ Writing_Sentence Prompts/Starters Organizer