CONNECTIONS: Michigan Academic State Standards for Mathematics
EXAMPLE CONTEXT FOR LANGUAGE USAGE: Students will be given multiple sets of data, within the same context, of house prices in a specific area. The context will be read aloud. They will then decide and justify whether the mean and standard deviation are appropriate to use for the data sets. While only one context is read aloud, two different written examples of students' responses are provided based on data sets with and without outliers.

COGNITIVE FUNCTION: Students at all levels of English language proficiency SYNTHESIZE a context read aloud in order to JUSTIFY the use or nonuse of the mean and standard deviation for different sets of data.

	Level 1 Entering	Level 2 Emerging	Level 3 Developing	Level 4 Expanding	Level 5 Bridging	Level 6 Reaching
Listening \& Writing	Synthesize a context read aloud multiple times with purposeful pauses and rephrasing as necessary, while pointing to supports, to justify in phrases or simples sentences the use or nonuse of the mean and standard deviation for different sets of data using a unit anchor chart, an illustrated reference sheet for contextual words, and sentence frames with answer choices while working with a partner at a higher level of English proficiency. Context to be read aloud: E.g., "Buying a home will likely [rephrase as 'probably'] be one of your biggest investments [pause, point to illustrated reference sheet, and rephrase as 'a way to make money']. The value of your home depends on many factors [pause and point to illustrated reference sheet], some examples are the market [pause and point to your neighborhood [pause and point	Synthesize a context read aloud multiple times with purposeful pauses and rephrasing as necessary, while pointing to supports, to justify in complete sentences the use or nonuse of the mean and standard deviation for different sets of data using a suggested word list (e.g., mean, standard deviation, set of data, outliers, normal/skew(ed)), a unit anchor chart, an illustrated reference sheet for contextual words, and sentence stems/frames with answer choices while working with a partner. Context to be read aloud: E.g., "Buying a home will likely [rephrase as 'probably'] be one of your biggest investments [pause, point to illustrated reference sheet, and rephrase as 'a way to make money']. The value of your home depends on many factors	Synthesize a context read aloud multiple times with purposeful pauses to justify in complete sentences the use or nonuse of the mean and standard deviation for different sets of data using a suggested word list (e.g., mean, standard deviation, set of data, outliers, normal/skew(ed)), a unit anchor chart, and an illustrated reference sheet for contextual words while working with a partner. Context to be read aloud: E.g., "Buying a home will likely be one of your biggest investments [pause]. The value of your home depends on many factors [pause], some examples are the market [pause], your neighborhood [pause], the size [pause], condition [pause], and similar house values [pause]. Home buyers often consider the average house value [pause] in deciding if they want to move to a certain area [pause]. Look at the following sets of house	Synthesize a context read aloud with purposeful pauses to justify in compound/complex sentences the use or nonuse of the mean and standard deviation for different sets of data using a suggested word list (e.g., mean, standard deviation, set of data, outliers, normal/skew(ed)) and a unit anchor chart while working with a partner. Context to be read aloud: E.g., "Buying a home will likely be one of your biggest investments [pause]. The value of your home depends on many factors [pause], some examples are the market [pause], your neighborhood [pause], the size [pause], condition [pause], and similar house values [pause]. Home buyers often consider the average house value	Synthesize a context read aloud with purposeful pauses to justify in compound/complex sentences the use or nonuse of the mean and standard deviation for different sets of data using a required word list (e.g., mean, standard deviation, set of data, outliers, normal/skew(ed)) and a unit anchor chart while working with a partner. Context to be read aloud: E.g., "Buying a home will likely be one of your biggest investments [pause]. The value of your home depends on many factors [pause], some examples are the market [pause], your neighborhood [pause], the size [pause], condition [pause], and similar house values [pause]. Home buyers often consider the average house value [pause] in deciding if they want to	

	Level 1 Entering	Level 2 Emerging	Level 3 Developing	Level 4 Expanding	Level 5 Bridging	Level 6 Reaching
Continued	illustrated reference sheet], your neighborhood [pause and point to illustrated reference sheet], the size [pause and point to illustrated reference sheet], condition [pause and point to illustrated reference sheet], and similar house values [pause and point to illustrated reference sheet]. Home buyers often consider [rephrase as 'think about'] the average house value [pause and point to illustrated reference sheet] in deciding if they want to move to a certain area [pause]. Look at the following sets of house values for a given area [pause]. For each set, determine [rephrase as 'think about'] if the mean [pause and point to anchor chart] and standard deviation [pause and point to anchor chart] are appropriate measures [pause, point to illustrated reference sheet, and rephrase as 'a good idea'] to use for analyzing house values [pause and point to illustrated reference sheet]. Justify your	factors [pause and point to illustrated reference sheet], some examples are the market [pause and point to illustrated reference sheet], your neighborhood [pause and point to illustrated reference sheet], the size [pause and point to illustrated reference sheet], condition [pause and point to illustrated reference sheet], and similar house values [pause and point to illustrated reference sheet]. Home buyers often consider [rephrase as 'think about'] the average house value [pause and point to illustrated reference sheet] in deciding if they want to move to a certain area [pause]. Look at the following sets of house values for a given area [pause]. For each set, determine [rephrase as 'think about'] if the mean [pause and point to anchor chart] and standard deviation [pause and point to anchor chart] are	values for a given area [pause]. For each set, determine if the mean [pause] and standard deviation [pause] are appropriate measures to use for analyzing house values [pause]. Justify your decision." E.g., [Student response for skewed data] "The mean and standard deviation should not be used for this set of data. The data set is skewed to the right because of the outliers. Two houses have very high values. The mean would not be a good measure for the average home value. The standard deviation should also not be used to study the spread. It is based on the mean." E.g., [Student response for symmetric data] "The mean and standard deviation should be used for this set of data. The data set does not have outliers and looks normal. No houses have very high or very low values. The mean would be a good measure	[pause] in deciding if they want to move to a certain area [pause]. Look at the following sets of house values for a given area [pause]. For each set, determine if the mean [pause] and standard deviation [pause] are appropriate measures to use for analyzing house values [pause]. Justify your decision." E.g., [Student response for skewed data] "The mean and standard deviation should not be used for this set of data because the data set is skewed to the right due to the outliers. Since two of the houses have very high values, the mean would not be a good measure for the average home value. The standard deviation will also be impacted because it is calculated using the mean and therefore should not be used to analyze the spread."	move to a certain area [pause]. Look at the following sets of house values for a given area [pause]. For each set, determine if the mean [pause] and standard deviation [pause] are appropriate measures to use for analyzing house values [pause]. Justify your decision." E.g., [Student response for skewed data] "The mean and standard deviation should not be used for this set of data because the data set is skewed to the right due to the outliers. Since two of the houses have very high values, the mean would not be a good measure for the average home value. The standard deviation will also be impacted because it is calculated using the mean and therefore should not be used to analyze the spread."	

	Level 1 Entering	Level 2 Emerging	Level 3 Developing	Level 4 Expanding	Level 5 Bridging	Level 6 Reaching
Continued	decision [pause and rephrase as 'tell me why']." \qquad (Use/do not use) the \qquad (mean/standard deviation). [Repeat for each measure.] The data set looks \qquad (normal/skewe d). I see \qquad (outliers/no outliers).	appropriate measures [pause, point to illustrated reference sheet, and rephrase as 'a good idea'] to use for analyzing house values [pause and point to illustrated reference sheet]. Justify your decision [pause and rephrase as 'tell me why']." The \qquad (mean/standard deviation) \qquad (should/should not) be used. [Repeat for each measure.] The data set looks \qquad (normal/skew ed) because....	for the average home value. The standard deviation should also be used to study the spread. It is based on the mean."	E.g., [Student response for symmetric data] "The mean and standard deviation should be used for this set of data because the data set does not contain outliers and is approximately normal. Since no houses have very high or very low values, the mean would be a good measure for the average home value. The standard deviation should also be used because it is calculated using the mean and will help analyze the spread of the data."	E.g., [Student response for symmetric data] "The mean and standard deviation should be used for this set of data because the data set does not contain outliers and is approximately normal. Since no houses have very high or very low values, the mean would be a good measure for the average home value. The standard deviation should also be used because it is calculated using the mean and will help analyze the spread of the data."	

EXAMPLE CONTEXT FOR LANGUAGE USAGE: The details of the activity can be found at https://www.illustrativemathematics.org/content-standards/HSS/ID/A/3/tasks/942 where students are asked to create a box plot from the data summaries of haircut costs for female and male college students and then describe the similarities and differences in shape, center, and spread of the two distributions. The strand of differentiation below corresponds to Part B of the activity, which provides an opportunity for students to produce language, in this case speaking. Either the students would have previously created box plots in Part A or teachers may provide the data summaries as box plots as well as in table form.

Oftentimes, students do not include the context when comparing distributions. However, students should be encouraged to provide the comparison in context. For example, in this task the comparison should be in terms of haircut costs for female and male college students. In addition, rather than describing each distribution separately, students should also be encouraged to actually compare the cost distributions. For example, students should be encouraged to say statements like "the mean haircut cost for female is $\$ 50$ higher than the mean haircut cost of the male" rather than "one mean is 80 and the other mean is 30. ."

Note that the sentence stems/frames below include "context word". Teachers should replace "context word" with the corresponding context word(s) for the given problem prior to giving students the sentence stems/frames. This allows the sentence stems/frames to be generalized to additional problems within the unit and/or course. Alternatively, teachers could highlight "context word" in the sentence stems/frames and highlight the corresponding context word on the reference/illustrated reference sheet as well as on the language of each idividual problem (context).

To aid Level 1 students in justifying statistical measures such as why a sample is skewed, the teacher could ask follow up questions (e.g., "Why do you think it is skewed? Why do you think that happened?"). These questions prompt Level 1 students to point, gesture, or provide one word answers in English, or their first language. Level 1 students are able to justify their thinking and should be provided adequate scaffolds in order to do so.

This strand addresses HSS-ID.A.3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

COGNITIVE FUNCTION: Students at all levels of English language proficiency DESCRIBE the similarities and differences in shape, center, and spread of two distributions in the context of the data sets.

	Level 1 Entering	Level 2 Emerging	Level 3 Developing	Level 4 Expanding	Level 5 Bridging	Level 6 Reaching
Speaking	Describe in short phrases or sentences the similarities and differences in shape, center, and spread of two distributions using a unit anchor chart, a reference sheet, an illustrated reference sheet with context words, sentence frames with choices, and working with a partner of higher English language proficiency.	Describe in simple sentences the similarities and differences in shape, center, and spread of two distributions in context using a unit anchor chart, a reference sheet, an illustrated reference sheet with context words, sentence frames with choices, and working with a partner of higher English language proficiency.	Describe in multiple complete sentences the similarities and differences in shape, center, and spread of two distributions in context, using a unit anchor chart, reference sheet, sentence frames/stems with choices, and working with a partner.	Describe in compound and/or complex sentences the similarities and differences in shape, center, and spread of two distributions in context using a unit anchor chart, suggested word list (e.g., boxplot, distribution, symmetric, skewed, center, spread, median, mean, mode, range, interquartile range, outlier,	Describe in compound and/or complex sentences the similarities and differences in shape, center, and spread of two distributions in context using a unit anchor chart and suggested word list (e.g., boxplot, distribution, symmetric, skewed, center, spread, median, mean, mode, range, interquartile range, outlier,	

	Level 1 Entering	Level 2 Emerging	Level 3 Developing	Level 4 Expanding	Level 5 Bridging	Level 6 Reaching
continued	E.g., [Students repeatedly use the frames/stems as necessary.] The boxplot for \qquad (context word e.g., males/ females) is \qquad (symmetric/skewed). The \qquad (minimum/ maximum) for \qquad (context word e.g., female haircut cost) is \qquad (\#). The range for \qquad (context word) is \qquad (\#). This is \qquad (smaller than/larger than/equal to) the range for \qquad (context word). The median for \qquad (context word e.g., males) is \qquad (\#). This is \qquad \# \qquad (more than/less than/times/of) the median for \qquad (context word). The interquartile range for \qquad (context word) is \qquad (\#). The mean is \qquad (smaller/larger) than the median. Outliers \qquad (affect/do not affect) the \qquad (median/mean).	E.g., [Students repeatedly use the frames/stems as necessary.] The boxplot for \qquad (context word e.g., males/females) is \qquad (symmetric/skew ed) because... The \qquad (minimum/maximu m) for \qquad (context word e.g., female haircut cost) is... The range for \qquad (context word) is \qquad (smaller/larger) than the range for \qquad (context word). The median for \qquad (context word e.g., males) is \qquad (\#) \qquad (more than/less than/times/of) the median for \qquad (context word). The interquartile range for \qquad (context word) is ... The mean is \qquad (smaller/larger) than the median because... Outliers \qquad (affect/do not affect) the \qquad (median/mean) because...	E.g., [Students repeatedly use the frames/stems as necessary.] The boxplot for \qquad (context word e.g., males/females) is \qquad (symmetric/skewed) because... The \qquad (minimum/maximum) for \qquad (context word e.g., female haircut cost) is... The range for \qquad (context word) is \qquad (smaller/larger) than the range for \qquad (context word). The median for \qquad (context word e.g., males) is \qquad (\#) \qquad (more than/less than/times/of) the median for \qquad (context word). The interquartile range for \qquad (context word) is ... The mean is \qquad (smaller/larger) than the median because... Outliers \qquad (affect/do not affect) the \qquad (median/mean) because...	minimum, maximum), and reference sheet while working with a partner. E.g., "Both boxplots show distributions that are skewed to the right. It makes sense that most haircuts will not cost too much, but a few students will spend a large amount. Since the cost will always be a positive number, the minimum cannot be less than 0 , and there is a long right tail. The centers and spreads are quite different. The median cost for females is about twice that of males, and there is much more variability in the haircut costs for women. The interquartile range (IQR) for women is $\$ 55$, while for men it is $\$ 10.75$. The mean is larger than the median because the distribution appears to be skewed to the right. The mean averages all the values in the data, so the mean is "pulled" toward the high ones. The median is in the middle of the data set and is not affected by outliers." (adapted from Illustrative Mathematics)	minimum, maximum) while working with a partner. E.g., "Both boxplots show distributions that are skewed to the right. It makes sense that most haircuts will not cost too much, but a few students will spend a large amount. Since the cost will always be a positive number, the minimum cannot be less than 0 , and there is a long right tail. The centers and spreads are quite different. The median cost for females is about twice that of males, and there is much more variability in the haircut costs for women. The interquartile range (IQR) for women is $\$ 55$, while for men it is $\$ 10.75$. The mean is larger than the median because the distribution appears to be skewed to the right. The mean averages all the values in the data, so the mean is "pulled" toward the high ones. The median is in the middle of the data set and is not affected by outliers." (adapted from Illustrative Mathematics)	

EXAMPLE CONTEXT FOR LANGUAGE USAGE: The strand below addresses the mathematics standard HSS-IC.B.3a: Recognize the purposes of and differences among sample surveys, experiments and observational studies. Students will read multiple scenarios and categorize them as best investigated through an experiment, a simulation, or an observational study. Prior to this lesson, students would have had experiences making sense of these different types of studies and sampling methods. During these experiences, students added illustrations or additional notes on the reference sheet as part of sense making. Students at Levels 1 and 2 would benefit from working in a small group with a paraprofessional or teacher to support making sense of the highly technical language. Throughout this lesson, students have access to this reference sheet and will use it as they analyze and categorize scenarios. (A reference sheet with space provided for student note taking is provided in the supports.)

The strand below provides supports to aid comprehensibility in reading. Students will need additional supports for speaking and/or writing as they are asked to explain their answers.

COGNITIVE FUNCTION: Students at all levels of English language proficiency will ANALYZE linguistically complex scenarios in order to APPLY an understanding of statistical terminology to categorize the scenarios according to appropriate sampling methods.

	Level 1 Entering	Level 2 Emerging	Level 3 Developing	Level 4 Expanding	Level 5 Bridging	Level 6 Reaching
Reading	Analyze simplified, illustrated versions of various scenarios in order to apply an understanding of statistical terminology to categorize the scenarios, using a reference sheet while working with a partner. E.g., [See supports for the complete illustrated version of the simplified scenarios below.] Decide whether each each of the following research topics is best studied by an experiment, a simulation, or an observational study. Explain your answer. WHO WANTS TO KNOW a) A pizza restaurant Which pizza sauce do people like best? b) An energy drink company Does their new drink give people more energy?	Analyze glossed versions of linguistically complex scenarios in order to apply an understanding of statistical terminology to categorize the scenarios, using a reference sheet and an illustrated word list for contextual words, while working with a partner. E.g., Determine [gloss: decide] whether each of the following research topics is best investigated [gloss: studied] through an experiment, a simulation, or an observational study. Explain your answer. a) A pizza restaurant is trying to determine [gloss: decide] which pizza sauce recipe is preferred [gloss: liked] by its guests [gloss: people eating]. b) An energy drink	Analyze glossed versions of linguistically complex scenarios in order to apply an understanding of statistical terminology to categorize the scenarios, using a reference sheet while working with a partner. E.g., Determine [gloss: decide] whether each of the following research topics is best investigated [gloss: studied] through an experiment, a simulation, or an observational study. Explain your answer. a) A pizza restaurant is trying to determine [gloss: decide] which pizza sauce recipe is preferred [gloss: liked] by its guests [gloss: people eating]. b) An energy drink manufacturer [gloss: maker/company] is trying to determine [gloss: decide] whether a certain new	Analyze linguistically complex scenarios in order to apply an understanding of statistical terminology to categorize the scenarios, using a reference sheet and comparing work with a partner. E.g., Determine whether each of the following research topics is best investigated through an experiment, a simulation, or an observational study. Explain your answer. a) A pizza restaurant is trying to determine which pizza sauce recipe is preferred by its guests. b) An energy drink manufacturer is trying to determine whether a certain new ingredient improves the energy level	Analyze linguistically complex scenarios in order to apply an understanding of statistical terminology to categorize the scenarios, using a reference sheet and comparing work with a partner. E.g., Determine whether each of the following research topics is best investigated through an experiment, a simulation, or an observational study. Explain your answer. a) A pizza restaurant is trying to determine which pizza sauce recipe is preferred by its guests. b) An energy drink manufacturer is trying to determine whether a certain new ingredient improves the energy level	

	Level 1 Entering	Level 2 Emerging	Level 3 Developing	Level 4 Expanding	Level 5 Bridging	Level 6 Reaching
continued	c) A doctor Do smokers and non-smokers have different average blood pressures? d) A town Will adding a traffic light increase or decrease the number of car accidents (crashes) at that intersection?	manufacturer [gloss: maker/company] is trying to determine [gloss: decide] whether a certain new ingredient [gloss: something in the drink] improves [gloss: makes better] the energy level of consumers [gloss: people who drink it]. c) A doctor wants to compare [gloss: find differences] the average blood pressures of smokers [gloss: people who smoke] and non-smokers [gloss: people who do not smoke]. d) A town [gloss: small city] is trying to determine whether [gloss: decide if] installing [gloss: putting up] a traffic light will increase [gloss: make more] or decrease [gloss: make less] the number of car accidents [gloss: crashes] at that intersection [gloss with a picture of two roads crossing/intersecting lines].	ingredient [gloss: something in the drink] improves [gloss: makes better] the energy level of consumers [gloss: people who drink it]. c) A doctor wants to compare [gloss: find differences] the average blood pressures of smokers [gloss: people who smoke] and non-smokers [gloss: people who do not smoke]. d) A town [gloss: small city] is trying to determine whether [gloss: decide if] installing [gloss: putting up] a traffic light will increase [gloss: make more] or decrease [gloss: make less] the number of car accidents [gloss: crashes] at that intersection [gloss with a picture of two roads crossing/intersecting lines].	of consumers. c) A doctor wants to compare the average blood pressures of smokers and non-smokers. d) A town is trying to determine whether installing a traffic light will increase or decrease the number of car accidents at that intersection.	of consumers. c) A doctor wants to compare the average blood pressures of smokers and non-smokers. d) A town is trying to determine whether installing a traffic light will increase or decrease the number of car accidents at that intersection.	

Copyright ©2015-2017 by the Michigan Association of Intermediate School Administrators and Oakland Schools.

Outlier - a data point that is dramatically different than other data points.

Origin Box Plot

Shape (Distribution):

Skewed vs Symmetric (normal or not normal)

Not Symmetric Symmetric

Notice this section is wider than the other section and the right whisker is longer than the left, so it is skewed.

Example Box Plots

Copyright ©2015-2017 by the Michigan Association of Intermediate School Administrators and Oakland Schools.

Box plot: visual display of 5 number summary

Minimum: the smallest number in data set

For an even number of values, add the two middle numbers \& divide by 2 .

Lower Quartile (Q1): the middle number to the left of the median in the data set, when data is in numerical order.
Median (Q2): the middle number when data set is in numerical order

Upper Quartile (Q3): the middle number to the right of the median in the data set, when data is in numerical order
Maximum: the largest number in data set

Range: Maximum - Minimum
Measures of Center: Mean, Median, or Mode of a data set (depends on distribution)
Measures of Spread: Range, Interquartile Range, or Standard Deviation of data (depends on distribution)
Shape: Describes the graph. Is it symmetric? How many peaks does it have? Is it skewed to the left or right? Is it uniform?

Copyright ©2015-2017 by the Michigan Association of Intermediate School Administrators and Oakland Schools

Population - set of all data or individuals the researcher is interested in studying
Example: The school principal wants to know the most popular month for 10th grade student birthdays. The population is the birthdates of all tenth graders in the school

Bias - an error or influence that causes a misrepresentation of a population.

Survey - an investigation in which every member of a sample is asked one or more questions.

Sample - a subset of the population.
Example: The birthdates of 40 tenth graders selected from a school with 500 tenth graders.

Unbiased - accurately represents the population.

Experiment - an investigation that imposes a treatment on individuals in order to collect information on their response to the treatment.

Observational Study - an investigation that observes individuals and measures variables without controlling the individuals or their environment. A survey is one example of an observational study.

Simulation - uses a model to reproduce the conditions of a situation using random probabilities so that the outcomes closely match the real-world outcomes
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Random Sampling- each member of the } \\ \text { population has an equal probability of being } \\ \text { selected. }\end{array} & \begin{array}{l}\text { Self-selected Sampling - members of the } \\ \text { population can choose whether to be part of the } \\ \text { sample. }\end{array} \\ \hline \begin{array}{l}\text { Systematic Sampling - a rule is used to select } \\ \text { members of the population to be part of the } \\ \text { sample. }\end{array} & \begin{array}{l}\text { Cluster Sampling - a population is divided into } \\ \text { smaller naturally occurring groups (clusters) and } \\ \text { all the members of one group or a few groups are } \\ \text { selected (geographical grouping). }\end{array} \\ \hline \begin{array}{l}\text { Example: Every tenth person is chosen. }\end{array} & \begin{array}{l}\text { Stratified Sampling - a population is divided into } \\ \text { smaller groups (strata) that share a similar } \\ \text { characteristic (age, income, race, religion, etc.). A } \\ \text { sample is then randomly selected from each } \\ \text { group. }\end{array}\end{array} \begin{array}{l}\text { Copulation who are easy or convenient to study } \\ \text { are selected for the sample. }\end{array}\right\}$

Population - set of all data or individuals being studied. Example: The birthdates of all tenth graders in a school.	
Sample - a subset of the population.	
Example: The birthdates of 40 tenth graders	
selected from a school with 500 tenth graders.	

Survey - an investigation in which every member of a sample is asked one or more questions.

Additional notes/examples/diagrams:

Experiment - an investigation that imposes a treatment on individuals in order to collect information on their response to the treatment.

Observational Study - an investigation that observes individuals and measures variables without controlling the individuals or their environment. A survey is one example of an observational study.

Simulation - uses a model to reproduce the conditions of a situation using random probabilities so that the outcomes closely match the real-world outcomes

Random Sampling - each member of the population has an equal probability of being selected.	Additional notes/examples/diagrams:
Self-selected Sampling - members of the population can choose whether to be part of the sample.	

Cluster Sampling - a population is divided into smaller naturally occurring groups (clusters) and all the members of one group or a few groups are selected.	Additional notes/examples/diagrams:
Stratified Sampling - a population is divided into smaller groups (strata) that share a similar characteristic. A sample is then randomly selected from each group.	
Convenience Sampling - only members of a population who are easy or convenient to study are selected for the sample.	

Pizza Restaurant	Guests/people eating	Pizza Sauce
Energy Drink	Ingredient/something in drink	Consumers/people who drink it

Copyright ©2015-2017 by the Michigan Association of Intermediate School Administrators and Oakland Schools.

Copyright ©2015-2017 by the Michigan Association of Intermediate School Administrators and Oakland Schools.

Copyright ©2015-2017 by the Michigan Association of Intermediate School Administrators and Oakland Schools.

Who?	Wants to know what?
c) A doctor	c) Do smokers and nonsmokers have different average blood pressures?

Who?	Wants to know what?
d) A town	d) Will adding a traffic light increase or decrease
	the number of car accidents (crashes) at that intersection (place)?

