sequences, u, v, and w.

Press MODE. Change the fourth line to SEQ for

Press [Y=]. You have the capability to define 3

Consider the sequence where $a_1 = 1$ and $a_n = 2 * a_{n-1}$.

To enter this sequence and generate a table of values. *n*Min will be 1 because the subscript of our initial term is a_1 . The **u**(**n**) notation replaces the a_n notation. Define u(n) as shown. Set u(nMin) as 1 because $a_1 = 1$.

Press [2nd] [GRAPH] to view the table. Using the table values ske ms of the sequence.

1. What appears to be happening in this pattern?

- 2. Is the value of each term changing at a constant rate, a slowing rate or an increasing rate?
- 3. What function produces the same table?

A sum of terms in a sequence is a series.

Next you will find the partial sums of the terms in the sequence **u**(*n*). This will be defined like a sequence where the sum for the *n*th term, **v**(*n*), is the sum for the previous term, **v**(*n*-1), plus the next term in the sequence $\mathbf{u}(n)$, which is $2 * \mathbf{u}(n-1)$. Define as shown:

$$v(n) = v(n-1) + 2 * u(n-1).$$

Press [2nd] [GRAPH] to view the table.

- 4. What is the relationship between the values in **u**(*n*) and **v**(*n*)?
- 5. What is the sum of the first six terms of the sequence **u**(*n*)?

Plot1 Plot2 Plot3

$$nMin=1$$

 $u(n)=$
 $u(nMin)=$
 $v(n)=$
 $v(nMin)=$
 $w(n)=$
 $w(nMin)=$
Plot1 Plot2 Plot3
 $nMin=1$
 $u(n)=2*u(n-1)$
 $u(nMin)=(1)$
 $v(n)=$
 $v(nMin)=$
 $w(nMin)=$
 $w(nMin)=$
 $w(nMin)=$
 $w(nMin)=$

Name Class

sequence mode.

Name	
Class	

Plot1 Plot2 Plot3

u(nMin)∎{5}

.u(n)∎0.1*u(n−1)

nMin=1

.ν(n)= ν(nMin)=

.ພ(ກ)=

6. Scroll down in the table. Do you notice anything more about the sum in column **v**(*n*)? Do the values appear to be stabilizing? Explain.

Consider the sequence where $a_1 = 5$ and $a_n = 0.1 * a_{n-1}$.

To enter this sequence and generate a table of values. *n***Min** will be 1 because our initial term is a_1 . The **u**(*n*) notation replaces the a_n notation. Define **u**(*n*) as shown. Set **u**(*n*Min) as 5 because $a_1 = 5$.

Press 2nd GRAPH to view the table.

- 7. What appears to be happening in this pattern?
- 8. Is the value of each term changing at a constant rate, a slowing rate or an increasing rate?
- **9.** What function produces the same table?

Find the sum of the terms in the sequence u(n). This will be defined like a sequence where the sum for the *n*th term is the sum for the previous term, v(n-1), plus the next term in the sequence u(n). Define as shown.

Plot1 Plot2 Plot3
»Min=1 ∿u(»)⊟0.1*u(»−1)
_u(nMin)≣{5} \(n)≣u(n=1)+0_1
*u(n-1)
ν(nMin)∎(5)

Press 2nd GRAPH to view the table.

10. What is the relationship between the values in **u**(*n*) and **v**(*n*)?

11. What is the sum of the first six terms of **u**(*n*)?

Geometric Sequences & Series

Name _	
Class _	

12. Do you notice anything more about the sum in column **v**(*n*)?

13. Does it appear to be *converging*? That is, does it appear to be approaching a value that it will never exceed?

Return to Y=. Right arrow to highlight the equals sign after **u**(*n*) and press **enter** to turn the sign off so that when you graph you will only be graphing the sums from **v**(*n*).

Press WINDOW. Arrow down to set the Xmin, Xmax, Ymin, and Ymax as shown at the right.

Ploti Plot2 Plot3 のMin=1 いい(の)=0.1*い(の-1)
u(nMin)=(5) ∿v(n)∎v(n-1)+0.1 *u(n-1) v(nMin)∎(5)
ытыроц
TPlotStee=1
Xmin=0
Xmin=0 Xmax=10
Xmin=0 Xmax=10 Xscl=1 Umin=3
Xmin=0 Xmax=10 Xscl=1 Ymin=3 Ymax=7

Press GRAPH and TRACE.

- **14.** What is happening to the sum as *n* increases? Is there a value that the sum will never reach?
- **15.** Investigate other series. When do series *diverge*, and when do series *converge*?