\qquad
\qquad

Press MODE. Change the fourth line to SEQ for sequence mode.

Press $Y=$. You have the capability to define 3 sequences, \mathbf{u}, \mathbf{v}, and \mathbf{w}.

Floti Flote Fiots min=1
$\because(n)=$
W(nyin) $=$
$\because(n)=$
v(myin) $=$
$\because(n)=$

Consider the sequence where $a_{1}=1$ and $a_{n}=2{ }^{*} a_{n-1}$.
To enter this sequence and generate a table of values. $n M i n$ will be 1 because the subscript of our initial term is a_{1}. The $\mathbf{u}(n)$ notation replaces the a_{n} notation. Define $\mathbf{u}(\boldsymbol{n})$ as shown. Set $\mathbf{u}(\boldsymbol{n M i n})$ as 1 because $a_{1}=1$.

```
Floti Flote Flots
min=1
\(\because\) ㄴ ( \(n\) ) \(\mathbf{A} 2+6(n-1)\)
- (mMin) 日 ( 1 )
\(\because(n)=\)
v(nMin) \(=\)
\(\because(n)=\)
w (min) =
```

Press 2nd GRAPH to view the table. Using the table values sketch a graph of the first five terms of the sequence.

1. What appears to be happening in this pattern?
2. Is the value of each term changing at a constant rate, a slowing rate or an increasing rate?
3. What function produces the same table?

A sum of terms in a sequence is a series.
Next you will find the partial sums of the terms in the sequence $\mathbf{u}(\boldsymbol{n})$. This will be defined like a sequence where the sum for the nth term, $\mathbf{v}(n)$, is the sum for the previous term, $\mathbf{v}(\boldsymbol{n}-1)$, plus the next term in the sequence $\mathbf{u}(n)$, which is $2^{*} \mathbf{u}(n-1)$. Define as shown:

$\mathbf{v}(n)=\mathbf{v}(n-1)+2 * \mathbf{u}(n-1)$.
Press 2nd GRAPH to view the table.
4. What is the relationship between the values in $\mathbf{u}(\boldsymbol{n})$ and $\mathbf{v}(\boldsymbol{n})$?
5. What is the sum of the first six terms of the sequence $\mathbf{u}(\boldsymbol{n})$?
\qquad
\qquad

6．Scroll down in the table．Do you notice anything more about the sum in column $\mathbf{v}(\boldsymbol{n})$ ？Do the values appear to be stabilizing？Explain．

Consider the sequence where $a_{1}=5$ and $a_{n}=0.1^{*} a_{n-1}$ ．

To enter this sequence and generate a table of values． n Min will be 1 because our initial term is a_{1} ．The $\mathbf{u}(n)$ notation replaces the a_{n} notation．Define $\mathbf{u}(n)$ as shown． Set $\mathbf{u}(\boldsymbol{n M i n})$ as 5 because $a_{1}=5$ ．

$v(n)=$
丽in）＝
$\because \omega(n)=$

Press 2nd GRAPH to view the table．
7．What appears to be happening in this pattern？

8．Is the value of each term changing at a constant rate，a slowing rate or an increasing rate？

9．What function produces the same table？

Find the sum of the terms in the sequence $\mathbf{u}(\boldsymbol{n})$ ．This will be defined like a sequence where the sum for the nth term is the sum for the previous term， $\mathbf{v}(\boldsymbol{n}-1)$ ，plus the next term in the sequence $\mathbf{u}(\boldsymbol{n})$ ．Define as shown．

Floti Flote Flots が阳に
－
$\because \varphi(n) E v(n-1)+0.1$
－$n-1$ ）

Press 2nd GRAPH to view the table．
10．What is the relationship between the values in $\mathbf{u}(\boldsymbol{n})$ and $\mathbf{v}(\boldsymbol{n})$ ？

11．What is the sum of the first six terms of $\mathbf{u}(\boldsymbol{n})$ ？
\qquad
\qquad

12．Do you notice anything more about the sum in column $\mathbf{v}(\boldsymbol{n})$ ？

13．Does it appear to be converging？That is，does it appear to be approaching a value that it will never exceed？

Return to Y ．Right arrow to highlight the equals sign after $\mathbf{u}(\boldsymbol{n})$ and press enter to turn the sign off so that when you graph you will only be graphing the sums from $v(n)$ ．

Floti Flote Flots
v（nMin）日（5）

Press WINDOW．Arrow down to set the Xmin，Xmax， Ymin，and Y max as shown at the right．

```
WIFTDOW
tPlotster=1
人以吅
人以 \(\times 10\)
\(\therefore=1=1\)
- m in=3
Ymax \(=7\)
\(\mathrm{YECl}=1\)
```

Press GRAPH and TRACE．
14．What is happening to the sum as n increases？Is there a value that the sum will never reach？

15．Investigate other series．When do series diverge，and when do series converge？

